TG Mutant RAS neoantigen vaccine – Available for partnering


TG01 is Targovax’s lead RAS immunotherapy product – a neoantigen therapeutic anti-cancer vaccine targeted at the difficult to treat RAS mutations found in over 90% of pancreatic cancer, 50% of colorectal cancer and 20-30% of all cancers. Initially being tested in the clinic in pancreatic cancer, it is hoped that by inducing mutant RAS specific T-cell immune responses in cancer patients with RAS mutations, TG01 will prolong time to cancer progression, increase survival and improve safety and tolerability compared to chemotherapy and other immunotherapies.

The trial enrolled a total of 32 patients, split in two patient cohorts with 19 patients in the 1st cohort and 13 patients in the 2nd cohort. The cohorts receiving different dosing regimens. Totally 94% of patients (30/32) demonstrated mutant RAS-specific immune activation.

Combining the results from the two cohorts, median overall survival (mOS) for all 32 patients was 33.3 months, which is nearly six months better than the mOS of 27.6 months for gemcitabine alone reported in the recent ESPAC4 trial (Neoptolemos JP et al.; The Lancet; 389:1011-1024 (2017)). Median disease free survival (mDFS) from surgery for the 32 patients was 16.1 months, and 19.5 months for the 2nd patient cohort who received the optimized dosing regimen. This DFS outcome is encouraging when compared to historical controls for gemcitabine monotherapy, such as the ESPAC4 and PRODIGE 24 (J Clin Oncol,36, 2018 (suppl; abstr LBA4001)) trials, which reported a median DFS of around 13 months in similar patient populations.

Summarizing the data from the trial:

  • mDFS (from surgery): Full trial, 32 patients (both cohorts combined): 16.1 months
  • mOS (from surgery): Full trial, 32 patients (both cohorts combined): 33.3 months
  • Patients alive two years after surgery: Full trial, 32 patients (both cohorts combined): 72% (23/32)
  • Patients alive three years after surgery: Full trial, 32 patients (both cohorts combined): 38% (12/32)


TG02 is a collection of 8 mutated RAS peptides and Targovax’s second mutRAS neoantigen cancer vaccine.


Peptide-based cancer vaccines activate cancer specific T – cell immune-responses


Mutant RAS proteins are neoantigen and drivers for development of cancer. RAS mutations are exclusively found in cancer cells and are therefore cancer specific targets for attacking cancer immunologically.

Targovax’s mutant RAS targeting immunotherapy is designed to activate T cells of the patient’s own immune system to attack the cancer cells. The immunotherapy is designed with mutant RAS mimicking peptides (antigens) that are long enough to be complexed with MHC class II molecules for stimulation of CD4+ T helper cells, and to allow antigen processing to shorter peptides that can be complexed with MHC class I molecules for stimulation of CD8+ cytotoxic T cells. The therapy is therefore able to activate both types of T cells necessary for achieving efficient anti-cancer immune activity.

Peptides are not immunogenic by themselves and need an adjuvant that can trigger the peptide immunization process resulting in activation of the desired anti-cancer specific T cells. The quality of the immune reaction to peptides is completely dependent on the adjuvant.

Targovax has selected the immune stimulator QS-21 as adjuvant, one of the most well-studied and potent adjuvants known to exist.

By targeting the central cancer neoantigen mutant RAS and using the right type of adjuvant Targovax hope to succeed in developing a clinically efficient immunotherapy – which will benefit all patients with RAS mutated cancers. Targovax’s RAS peptides are small proteins which can be produced chemically in quantities of many kilograms. They are also very stable and can be stored for several years.

T-Cells, the Human Immune System and the Role of RAS Targeted Immunotherapies

The human immune system is the body’s scanner and defense against infectious organisms and other invaders. It works on two levels: through the innate immune system and the adaptive immune system.

The innate immune system is always active and responds to general threats such as invading microbes or debris from dead cells after injury. The advantage of the innate immune system is that it is always active and responsive. The disadvantage is that it is largely non-specific.

The immune system has its “front line soldiers” – cells which are non-specific, such as natural killer cells and macrophages. These will attack a threat from, for example, cancer cells without knowing anything about them. This is the innate immune system.


The adaptive immune system mounts targeted responses to specific threats. It is slower than the innate immune system to be activated, sometimes taking weeks or months for an adaptive immune response to be fully active. Once activated, however, it is extremely effective at eliminating a specific threat such as a virus or, in this case, cancer.

Except for a very few exceptions, all human cells showcase on their surface a sample of the proteins of which they are made. The proteins are broken up into short peptides (i.e. protein fragments) and displayed on the cellular surface by MHC (Major Histocompatibility Complex) class I protein complexes.

Normal cells display a range of normal peptides on their MHC class I complexes, which do not trigger a reaction by CD8+ cytotoxic T-cells (cells of the adaptive immune system that can kill other cells if needed).

Cancer cells carry mutations in some genes and thus produce mutated proteins. They display on their surface mostly normal peptides, but also some abnormal peptides. If the CD8+ cytotoxic T-cells recognize an MHC class I complex when it presents an abnormal peptide, the T-cells will kill the cancer cell. This is how, it is believed, the immune system eliminates most cancer cells. In fact, it is likely we all experience cancer every now and then but are not aware of it because these emergent cancer cells are quickly being cleared out by the immune system.

Sometimes the mutations of the cancer cell do not drastically change the shape of the proteins and the cancer cell displays thus a range of only slightly abnormal peptides on its surface. Cancers with RAS mutations are one such example. CD8+ cytotoxic T-cells do not easily recognize these slightly abnormal RAS peptides and therefore are not able to eliminate RAS mutated cancer cells, as for example in pancreatic cancer. Here, the CD8+ cytotoxic T-cells need help to learn to recognize RAS mutated peptides. This is where Targovax comes in.

Targovax’s lead peptide-based targeted immunotherapy TG01 is a collection of 7 mutated RAS peptides, which are injected into the skin just like most targeted immunotherapies. TG01 is administered together with QS-21, a substance that boosts immune reactions.


QS-21 is injected under the skin to activate the local antigen presenting cells (APC) like dendritic cells (DC). After injection of RAS peptides at the same site as GM-CSF the peptides are taken up by the activated DCs, which carry the TG01 peptides to the lymph nodes – the immune system power hubs. There, the DCs present the RAS peptides, eventually after processing to shorter peptides, on MHC class I and II protein complexes to both CD4+ and CD8+ T cells. T cells that are able to recognize the mutant RAS peptides are activated, proliferate to increase in number and enter systemic circulation in the body.

As their name implies, CD4+ helper T-cells are helpful indeed: they secrete growth factors to provide the right environment for CD8+ cytotoxic T-cells to proliferate. They live a long time, some a lifetime, and form a lasting memory of the immune system: when the immune system is challenged a second time with the same specific threat, the adaptive immune system will be ready to intervene at short notice. And the CD4+ helper T-cells down regulate excessive immune responses in order to prevent auto-immunity.

In short, CD4+ helper T-cells are an essential part of a well-calibrated immune response. An important twist to this story is that the MHC class II complexes require peptides of about 17-25 amino acids (a peptide is a short string of amino acids), while MHC class I complexes can recognize peptides of 8-10 amino acids long. MHC class II complexes are needed to generate CD4+ helper T-cells and specific CD8+ cytotoxic T-cells. Importantly, the RAS mutated peptides in TG01 are sufficiently long as to be recognized by both MHC Class II complexes as well as the MHC class I complexes. The peptides are degraded by the cells and the shorter degradation products can then be recognized by MHC class I complexes. This way, Targovax’s RAS peptide-based targeted immunotherapies activate both CD4+ helper T-cells and CD8+ cytotoxic T-cells.

RAS mutations and Cancer

Targovax is developing a highly targeted immunotherapy for patients with RAS-mutated tumors – the most frequently mutated oncogene in cancer, with no approved therapies. Mutation of RAS disrupts normal cell division signaling and occurs early in the transformation from a normal to a cancer cell.

RAS mutations are a key driver of cancer progression and treatment resistance. They are found in 20 – 30% of all cancers1, over 90% of pancreatic cancers2, 50% of colorectal cancers3, between 20 and 30% of non-small cell lung cancers4 and between 20 and 30% of malignant melanomas1.

Few treatment options are available for patients with RAS mutations and of limited efficacy, highlighting the significant unmet medical need for these patients.


  • Fernandez-Medarde, A. and Santos, E.; RAS in Cancer and Developmental Diseases; Genes & Cancer. 2011;2(3):344–358
  • Raphael B.J. et al; Integrated genomic characterization of pancreatic ductal adenocarcinoma; Cancer Cell 32, 185-203, August 14, 2017
  • Van Cutsem, E. et al; Fluorouracil, Leucovorin, and Irinotecan Plus Cetuximab Treatment and RAS Mutations in Colorectal Cancer; J Clin Oncol. 2015; 33(7):692-700
  • D’Arcangelo, M. and Cappuzzo, F.; K-RAS Mutations in Non-Small-Cell Lung Cancer: Prognostic and Predictive Value; International Scholarly Research Network, ISRN Molecular Biology, Volume 2012, Article ID 837306, 8p.


Contact info

Dr Erik Digman Wiklund
Dr Erik Digman Wiklund
Telephone: +47 41 33 35 36